Modelling acoustics on the Poincaré half-plane

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Poincaré Half-Plane for Informationally-Complete POVMs

It has been shown in previous papers that classes of (minimal asymmetric) informationally-complete positive operator valued measures (IC-POVMs) in dimension d can be built using the multiparticle Pauli group acting on appropriate fiducial states. The latter states may also be derived starting from the Poincaré upper half-plane model H. To do this, one translates the congruence (or non-congruenc...

متن کامل

On the Linear Combinations of Slanted Half-Plane Harmonic Mappings

‎In this paper,  the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-gamma) $ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.

متن کامل

Coulomb Gas on the Half Plane

The Coulomb-gas description of minimal models is considered on the half plane. Screening prescriptions are developed by the perturbative expansion of the Liouville theory with imaginary coupling and with Neumann boundary condition on the bosonic field. To generate the conformal blocks of more general boundary conditions, we propose the insertion of boundary operations.

متن کامل

Divergence-Free Multiwavelets on the Half Plane

We use the biorthogonal multiwavelets related by differentiation constructed in previous work to construct compactly supported biorthogonal multiwavelet bases for the space of vector fields on the upper half plane R+ such that the reconstruction wavelets are divergence-free and have vanishing normal components on the boundary of R+. Such wavelets are suitable to study the Navier–Stokes equation...

متن کامل

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2018

ISSN: 0377-0427

DOI: 10.1016/j.cam.2017.10.037